Robert J. Keenan

Research Summary
We study the molecular mechanisms underlying membrane protein biogenesis and quality control using biochemical, structural and cell biology approaches.
Keywords
Membrane protein biogenesis, Membrane protein quality control, Structural biology, Biochemical reconstitution, Cell biology
Education
  • Bates College, Lewiston, ME, BS Biology and Chemistry 06/1990
  • UCSF, San Francisco, CA, PHD Biochemistry and Biophysics 05/1998
  • UCSF, San Francisco, CA, Postdoc Biochemistry and Biophysics 09/1999
Biosciences Graduate Program Association
Publications
  1. Mechanism of an intramembrane chaperone for multipass membrane proteins. Nature. 2022 11; 611(7934):161-166. View in: PubMed

  2. Substrate-driven assembly of a translocon for multipass membrane proteins. Nature. 2022 11; 611(7934):167-172. View in: PubMed

  3. The mechanisms of integral membrane protein biogenesis. Nat Rev Mol Cell Biol. 2022 02; 23(2):107-124. View in: PubMed

  4. An ER translocon for multi-pass membrane protein biogenesis. Elife. 2020 08 21; 9. View in: PubMed

  5. The architecture of EMC reveals a path for membrane protein insertion. Elife. 2020 05 27; 9. View in: PubMed

  6. A structural perspective on tail-anchored protein biogenesis by the GET pathway. Curr Opin Struct Biol. 2018 08; 51:195-202. View in: PubMed

  7. Identification of Oxa1 Homologs Operating in the Eukaryotic Endoplasmic Reticulum. Cell Rep. 2017 12 26; 21(13):3708-3716. View in: PubMed

  8. Tail-Anchored Protein Insertion by a Single Get1/2 Heterodimer. Cell Rep. 2017 Sep 05; 20(10):2287-2293. View in: PubMed

  9. Msp1 Is a Membrane Protein Dislocase for Tail-Anchored Proteins. Mol Cell. 2017 Jul 20; 67(2):194-202.e6. View in: PubMed

  10. The GET System Inserts the Tail-Anchored Protein, SYP72, into Endoplasmic Reticulum Membranes. Plant Physiol. 2017 02; 173(2):1137-1145. View in: PubMed

  11. Ubiquilins Chaperone and Triage Mitochondrial Membrane Proteins for Degradation. Mol Cell. 2016 07 07; 63(1):21-33. View in: PubMed

  12. Data publication with the structural biology data grid supports live analysis. Nat Commun. 2016 Mar 07; 7:10882. View in: PubMed

  13. Conformational Chaperones for Structural Studies of Membrane Proteins Using Antibody Phage Display with Nanodiscs. Structure. 2016 Feb 02; 24(2):300-9. View in: PubMed

  14. A dual fluorescent reporter for the investigation of methionine mistranslation in live cells. RNA. 2016 Mar; 22(3):467-76. View in: PubMed

  15. A YidC-like Protein in the Archaeal Plasma Membrane. Structure. 2015 Sep 01; 23(9):1715-1724. View in: PubMed

  16. Protein targeting. Structure of the Get3 targeting factor in complex with its membrane protein cargo. Science. 2015 Mar 06; 347(6226):1152-5. View in: PubMed

  17. Fission yeast profilin is tailored to facilitate actin assembly by the cytokinesis formin Cdc12. Mol Biol Cell. 2015 Jan 15; 26(2):283-93. View in: PubMed

  18. Tail-anchored membrane protein insertion into the endoplasmic reticulum. Nat Rev Mol Cell Biol. 2011 Nov 16; 12(12):787-98. View in: PubMed

  19. The mechanism of membrane-associated steps in tail-anchored protein insertion. Nature. 2011 Aug 24; 477(7362):61-6. View in: PubMed

  20. A conserved archaeal pathway for tail-anchored membrane protein insertion. Traffic. 2011 Sep; 12(9):1119-23. View in: PubMed

  21. Noncytotoxic DsRed derivatives for whole-cell labeling. Methods Mol Biol. 2011; 699:355-70. View in: PubMed

  22. A ribosome-associating factor chaperones tail-anchored membrane proteins. Nature. 2010 Aug 26; 466(7310):1120-4. View in: PubMed

  23. Chromophore formation in DsRed occurs by a branched pathway. J Am Chem Soc. 2010 Jun 23; 132(24):8496-505. View in: PubMed

  24. The structural basis of tail-anchored membrane protein recognition by Get3. Nature. 2009 Sep 17; 461(7262):361-6. View in: PubMed

  25. A rapidly maturing far-red derivative of DsRed-Express2 for whole-cell labeling. Biochemistry. 2009 Sep 08; 48(35):8279-81. View in: PubMed

  26. Noncytotoxic orange and red/green derivatives of DsRed-Express2 for whole-cell labeling. BMC Biotechnol. 2009 Apr 03; 9:32. View in: PubMed

  27. A noncytotoxic DsRed variant for whole-cell labeling. Nat Methods. 2008 Nov; 5(11):955-7. View in: PubMed

  28. Spectral diversity of fluorescent proteins from the anthozoan Corynactis californica. Mar Biotechnol (NY). 2008 May-Jun; 10(3):328-42. View in: PubMed

  29. Structural rearrangements near the chromophore influence the maturation speed and brightness of DsRed variants. Protein Eng Des Sel. 2007 Nov; 20(11):525-34. View in: PubMed

  30. The molecular basis of glyphosate resistance by an optimized microbial acetyltransferase. J Biol Chem. 2007 Apr 13; 282(15):11446-55. View in: PubMed

  31. Laboratory-directed protein evolution. Microbiol Mol Biol Rev. 2005 Sep; 69(3):373-92. View in: PubMed

  32. DNA shuffling as a tool for protein crystallization. Proc Natl Acad Sci U S A. 2005 Jun 21; 102(25):8887-92. View in: PubMed

  33. Evolution of a microbial acetyltransferase for modification of glyphosate: a novel tolerance strategy. Pest Manag Sci. 2005 Mar; 61(3):235-40. View in: PubMed

  34. Nontransgenic crops from transgenic plants. Nat Biotechnol. 2002 Mar; 20(3):215-6. View in: PubMed

  35. The signal recognition particle. Annu Rev Biochem. 2001; 70:755-75. View in: PubMed

  36. Perspectives: structural biology. SRP--where the RNA and membrane worlds meet. Science. 2000 Feb 18; 287(5456):1212-3. View in: PubMed

  37. Structure of the phylogenetically most conserved domain of SRP RNA. RNA. 1999 Nov; 5(11):1419-29. View in: PubMed

  38. Functional changes in the structure of the SRP GTPase on binding GDP and Mg2+GDP. Nat Struct Biol. 1999 Aug; 6(8):793-801. View in: PubMed

  39. Crystal structure of the signal sequence binding subunit of the signal recognition particle. Cell. 1998 Jul 24; 94(2):181-91. View in: PubMed

  40. Structure of the conserved GTPase domain of the signal recognition particle. Nature. 1997 Jan 23; 385(6614):361-4. View in: PubMed

  41. NMR studies of the most conserved RNA domain of the mammalian signal recognition particle (SRP). RNA. 1996 Dec; 2(12):1213-27. View in: PubMed

  42. Structure of a non-peptide inhibitor complexed with HIV-1 protease. Developing a cycle of structure-based drug design. J Biol Chem. 1993 Jul 25; 268(21):15343-6. View in: PubMed